INTRODUCTION

HEAD UP DISPLAY SUBSYSTEM (HUDS)

FIRE CONTROL COMPUTER (FCC)

AIR DATA SUBSYSTEM (ADS)

ROCKET MANAGEMENT SUBSYSTEM (RMS)

UNIVERSAL TURRET SUBSYSTEM (UTS)

HELMET SIGHT SYSTEM (HSS)

TOW MISSILE SUBSYSTEM

ARMAMENT POWER

JETTISON

This copy is a reprint which includes current pages from Changes 1 through 3.
REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this manual. If you find any mistakes or if you know of a way to improve the procedures, please let us know. Mail your letter, or the DA Form 2028-2 located in the back of this manual direct to:

A reply will be furnished to you.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOW TO USE THIS MANUAL</td>
<td>ii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>1-1</td>
</tr>
<tr>
<td>Section I General</td>
<td>1-1</td>
</tr>
<tr>
<td>Section II Equipment Description</td>
<td>1-3</td>
</tr>
<tr>
<td>Section III Maintenance Action Precise Symptoms (MAPS)</td>
<td>1-5</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>2-1</td>
</tr>
<tr>
<td>HEAD UP DISPLAY SUBSYSTEM (HUDS)</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>3-1</td>
</tr>
<tr>
<td>FIRE CONTROL COMPUTER (FCC)</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>4-1</td>
</tr>
<tr>
<td>AIR DATA SUBSYSTEM (ADS)</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>5-1</td>
</tr>
<tr>
<td>ROCKET MANAGEMENT SUBSYSTEM (RMS)</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td>6-3</td>
</tr>
<tr>
<td>UNIVERSAL TURRET SUBSYSTEM (UTS)</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 7</td>
<td>7-3</td>
</tr>
<tr>
<td>HELMET SIGHT SUBSYSTEM (HSS)</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 8</td>
<td>8-1</td>
</tr>
<tr>
<td>TOW MISSILE SUBSYSTEM (TMS)</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 9</td>
<td>9-1</td>
</tr>
<tr>
<td>ARMAMENT POWER SUPPLY AND DISTRIBUTION</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 10</td>
<td>10-1</td>
</tr>
<tr>
<td>WING STORES JETTISON SYSTEM</td>
<td></td>
</tr>
</tbody>
</table>
This troubleshooting manual is as easy to use as a road map. You must leave a given location (problem) and proceed along a desired route (troubleshooting) and arrive at your destination (solution).

Keep in mind that this manual assumes that "ONLY ONE PROBLEM EXISTS AT A TIME." However, a problem may appear in many ways. For example, a symbol is missing, out of shape, inverted, indicator pointer incorrect, lamp out, etc. Also, the problem may be discovered in several ways, such as pilot/gunner writeup, during maintenance, operational check, etc. In some cases there may be several symptom indications) for a single problem.

The technician must be able to quickly find the particular portion of the manual that contains the needed information. The front cover, index, table of contents, Maintenance Action Precise Symptom list, and text (highlighted with a box) provide information for major topic and subtopic breakdown and some locations.

Troubleshooting is designed to promote rapid fault isolation. This allows you to quickly remedy the problem and return the helicopter to operational status. Quick turnaround, with accurate solution, is the essence of troubleshooting.

The troubleshooting is test and fault-isolation oriented and the data will get you directly from the symptom to the proper solution using minimum information. It divides troubleshooting into three major steps:

1. Recreate or maintain the condition that led you or the operator to the problem.
2. Find needed information by referring to the Maintenance Action Precise System (MAPS) list, table of content, front cover, etc.
3. Accomplish troubleshooting using logic trees, wiring diagrams, reference data, etc.

If these troubleshooting procedures are not successful, references are provided that will allow the troubleshooting to be continued within the appropriate subsystem manual (see paragraph 1-1). The logic tree, when used with built-in-test (BIT) troubleshooting, will lead you to the faulty part or wiring with a high degree of certainty.

Entry into Logic Trees.

Logic trees are designed to be entered directly from a specific location in the operational check. The operational check sets all switches, circuit breakers, etc. in the proper position for that logic tree. In some cases a logic tree is entered directly from another logic tree. A logic tree entered directly from another logic tree shall be considered a continuation of the first logic tree. In the block which sends the user to a referenced logic tree, all additional switches, circuit breakers, etc. must be pre-positioned to be compatible with the referenced logic tree.

1. Set PLT ORIDE switch to PLT ORIDE.
2. Set MASTER ARM switch to OFF.

Then go to paragraph 2-2.

Trouble Discovered by Operator. Read the problem statement (write-up), in the aircraft form, very carefully and whenever possible debrief the operator (flight crew) to get a general idea of the problem.

1. Determine which subsystem has a fault.
2. Find symptom description in the MAPS list which correlates the symptom to a precise troubleshooting procedure.

Trouble discovered by technician. When the trouble is found during normal maintenance, your choices for finding the appropriate data are as follows:

1. Use the MAPS list (this manual) to find the required troubleshooting data and operational check.
2. Use troubleshooting procedures within the subsystem manual being used to perform the maintenance.
3. Use troubleshooting data in other subsystem manual(s).

NOTE

Some logic trees in this manual cannot be reached from the 'operational check.' If a defined symptom does not appear during the operational check, refer directly to the MAPS and comply with the action specified for that symptom.

Logic Tree. The Logic Tree assumes that ONLY ONE PROBLEM EXISTS AT A TIME. It is a programmed method that involves user-logic tree interaction. The user is given a particular instruction, then is asked a YES-NO question about the result of his or her action. Based on
the answer, the user is directed to another block of instruction. Faults that occur on a rare or random basis are excluded and the technician may elect to refer to another troubleshooting aid such as a simplified circuit or wiring diagram.

A total electrical schematic for the MAPS problem is included with the starting logic tree. Each continuing subparagraph has only the portion of the total electrical schematic applicable to the logic tree in this paragraph.

Verification of Symptom.

When a particular symptom is found, reverify that the symptom is present before proceeding to the repair action procedure. This precludes unnecessary maintenance in the event an erroneous symptom occurs.

Verification of Repair.

Under certain circumstances, a fault may be exhibited during the accomplishment of the Operational Check in one chapter and the troubleshooting and repair logic tree for that fault in another chapter. Also, some logic trees refer to another chapter or logic tree within another chapter for continuation of troubleshooting. After location and repair of the fault, rerun the operational check in which the fault appeared.

Large logic trees.

Large logic trees are broken into logical segments which can be entered from the operational procedure and identified as a separate MAPS. This isolates systems using switches, circuit breakers, etc. and are broken into separate parts (A, B, C, etc).

Each logic tree with its locator illustrations stand alone and are broken into smaller page size segments with single flow arrows. A block "Go to paragraph" directs the continuation of the logic.

Each continuation of the logic tree has locator illustrations on the facing page identifying items on that portion of the logic tree. Each continuation has the same format as a regular logic tree except that the initial setup, tools, personnel and references are not repeated.
CHAPTER 6
UNIVERSAL TURRET SUBSYSTEM (UTS) TROUBLESHOOTING

OVERVIEW
This chapter contains the UTS operational check and logic tree troubleshooting procedures.

If a fault occurs during the operational check, stop the check, leave switches and circuit breakers in position, and refer to MAPS in Chapter 1 for that symptom. The MAPS will refer to a specific troubleshooting or repair procedure for that fault.

WARNING
Turn off all electrical power when removing equipment or disconnecting electrical connectors unless otherwise noted in the procedures.
6-1. UTS PRE-OPERATIONAL CHECK
SETUP

INITIAL SETUP

Applicable Configuration
All

Personnel Required
65J (2)

a. Open (OFF) all circuit breakers on AC/ARMT circuit breaker panel.

b. Open all circuit breakers on DC circuit breaker panel.

c. Set pilot ARMT control panel switches:
 (1) MASTER ARM to OFF.
 (2) WPN CONTR to GUNNER.
 (3) HSS RTCL to BRT.
d. Set TCP (TOW control panel) switches:
 (1) LASER ARM to OFF.
 (2) MODE SELECT to OFF.

e. Set ACQ/TRK/STOW switch on sight hand control to STOW.

f. Set gunner armament control panel switches:
 (1) LASER SAFE/TURRET DEPR LIMIT to LASER SAFE/TURRET DEPR LIMIT.
 (2) TSU/GUN SLEW RATE HIGH.
 (3) TUR SLEW to GND TEST.
 (4) PLT ORIDE to OFF.
 (5) HSS RTCL to BRT.
6-2. UTS OPERATIONAL CHECK.

NOTE

Complete PRE-OPERATIONAL CHECK SETUP, paragraph 6-1, before continuing with operational check.

INITIAL SETUP

Applicable Configuration

All

Tools/Test and Support

Equipment

- Digital Voltmeter
- Multimeter
- Helmet with XM 136 Sight - Installed (2)
- TSEM (Tow System Evaluation Missile) or TOW Missile Present Simulator (Local Manufacture)
- Tool Set, A/C Armament Repairman
- Ground Power Unit
- Test Set, Electronic System, M137

Equipment Condition

- Gun Safed/Barricade Erected (TM 9-1090-206-20-1/30)
- Ammunition Feed System Installed (TM 9-1090-206-20-1)

Personnel Required

68J (3)

References

- TM 9-1090-206-20-1/30
- TM 9-1425-473-34
- TM 55-1520-236-10
- TM 55-1520-236-23

Access Panels

- Battery Compartment - Removed
- External Power Door - Open
- Ammo Compartment Door - Open

Open

GUNNER MISCELLANEOUS CONTROL PANEL

TELESCOPIC SIGHT UNIT (TSU)

GUNNER ARMAMENT CONTROL PANEL

SIGHT HAND CONTROL