AND AH-1F(MCN)
INTEGRATED ARMAMENT AND TECHNICAL MANUAL
TECHNICAL MANUAL
TROUBLESHOOTING INSTRUCTIONS
AVIATION UNIT MAINTENANCE (AVUM) LEVEL AND INTERMEDIATE MAINTENANCE (AVIM) LEVEL

AH-1F (MC) AND AH-1F(MCN)
INTEGRATED ARMAMENT AND FIRE CONTROL SYSTEM

HEADQUARTERS, DEPARTMENT OF THE ARMY
15 JUNE 1983
Troubleshooting Instructions

Aviation Unit Maintenance (AVUM) Level And Intermediate Maintenance (AVIM) Level

AH-1F (MC) AND AH-1F (MCN)

INTEGRATED ARMAMENT AND FIRE CONTROL SYSTEM

REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS.

You can help improve this manual. If you find any mistakes of if you know of a way to improve the procedures, please let us know. Mail your letter, or the DA Form 2028-2 located in the back of this manual direct to:

Commander, US Army Aviation and Troop Command, ATTN: AMSAT-I-MP,
4300 Goodfellow Blvd., St. Louis, Mo. 63120-1798.

A reply will be furnished to you.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOW TO USE THIS MANUAL</td>
<td>11</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>Section I</td>
<td>General</td>
</tr>
<tr>
<td>Section II</td>
<td>Equipment Description</td>
</tr>
<tr>
<td>Section III</td>
<td>Maintenance Action Precise Symptoms (MAPS)</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>HEAD UP DISPLAY SUBSYSTEM (HUDS)</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>FIRE CONTROL COMPUTER (FCC)</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>AIR DATA SUBSYSTEM (ADS)</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>ROCKET MANAGEMENT SUBSYSTEM (RMS)</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td>UNIVERSAL TURRET SUBSYSTEM (UTS)</td>
</tr>
<tr>
<td>CHAPTER 7</td>
<td>HELMET SIGHT SUBSYSTEM (HSS)</td>
</tr>
<tr>
<td>CHAPTER 8</td>
<td>TOW MISSILE SUBSYSTEM (TMS)</td>
</tr>
<tr>
<td>CHAPTER 9</td>
<td>ARMAMENT POWER SUPPLY AND DISTRIBUTION</td>
</tr>
<tr>
<td>CHAPTER 10</td>
<td>WING STORES JETTISON SYSTEM</td>
</tr>
<tr>
<td>CHAPTER 11</td>
<td>AIM-1/EXL IR LASER GUNVISION SYSTEM</td>
</tr>
</tbody>
</table>
HOW TO USE THIS MANUAL.

This troubleshooting manual is as easy to use as a road map. You must leave a given location (problem) and proceed along a desired route (troubleshooting) and arrive at your destination (solution).

Keep in mind that this manual assumes that “ONLY ONE PROBLEM EXISTS AT A TIME.” However, a problem may appear in many ways. For example, a symbol is missing, out of shape, inverted, indicator pointer incorrect, lamp out, etc. Also, the problem may be discovered in several ways, such as pilot/gunner writeup, during maintenance, operational check, etc. In some cases there may be several symptom indications, for a single problem.

The technician must be able to quickly find the particular portion of the manual that contains the needed information.

The front cover, index, table of contents, Maintenance Action Precise Symptoms (MAPS) list, and text (highlighted with a box) provide information for major topic and subtopic breakdown and some locations.

Troubleshooting is designed to promote rapid fault isolation. This allows you to quickly remedy the problem and return the helicopter to operational status. Quick turnaround, with accurate solution, is the essence of troubleshooting.

The troubleshooting is test and fault-isolation oriented and the data will get you directly from the symptom to the proper solution using minimum information. It divides troubleshooting into three major steps:

1. Recreate or maintain the condition that led you or the operator to the problem.
2. Find needed information. By referring to the Maintenance Action Precise Systems (MAPS) list, table of contents, front cover, etc.
3. Accomplish troubleshooting using logic trees, wiring diagrams, reference data, etc.

If these troubleshooting procedures are not successful, references are provided that will allow the troubleshooting to be continued within the appropriate subsystem manual (see paragraph 1-1). The logic tree, when used with built-in-test (BIT) troubleshooting, will lead you to the faulty part or wiring with a high degree of certainty.

Entry into Logic Trees. Logic trees are designed to be entered directly from a specific location in the operational check. The operational check sets all switches, circuit breakers, etc. in the proper position for that logic tree. In some cases a logic tree is entered directly from another logic tree. A logic tree entered directly from another logic tree shall be considered a continuation of the first logic tree. In the block which sends the user to a referenced logic tree, all additional switches, circuit breakers, etc. must be pre-poseditioned to be compatible with the referenced logic tree. If the referenced logic tree is in another chapter, instructions are given to work the referenced logic tree (including the operational check called out in the referenced logic tree) and then perform the operational check of the originating logic tree chapter.

Example:
Set PLT ORIDE switch to PLT ORIDE.
Set MASTER ARM switch to OFF.
Accomplish paragraph 8-15.
Then go to paragraph 2-2.

Trouble Discovered by Operator. Read the problem statement (write-up), in the aircraft form, very carefully and whenever possible debrief the operator (flight crew) to get a general idea of the problem.

1. Determine which subsystem has a fault.
2. Find symptom description in the MAPS list which correlates the symptom to a precise troubleshooting procedure.
3. Perform the subsystem operational check to verify the fault.

Trouble Discovered by Technician. When the trouble is found during normal maintenance, your choices for finding the appropriate data are as follows:

1. Use the MAPS list (this manual) to find the required troubleshooting data and operational check.
2. Use troubleshooting procedures within the subsystem manual being used to perform the maintenance.
3. Use troubleshooting data in other subsystem manual(s).

NOTE

Some logic trees in this manual cannot be reached from the operational check. If a defined symptom does not appear during the operational check, refer directly to the MAPS and comply with the action specified for that symptom.

Logic Tree. The Logic Tree assumes that ONLY ONE PROBLEM EXISTS AT A TIME. It is a programmed method that involves user-logic tree interaction. The user is given a particular instruction, then asked a YES-NO question about the result of his or her action. Based on
HOW TO USE THIS MANUAL (CONTINUED).

the answer, the user is directed to another block of instruction. Faults that occur on a rare or random basis are excluded and the technician may elect to refer to another troubleshooting aid such as a simplified circuit or wiring diagram.

Large Logic Trees. Large logic trees are broken into logical segments (parts). This isolates systems using common switches, circuit breakers, etc. and are identified as parts A, B, C, etc.

A total electrical schematic for the MAPS problem is included with the starting logic tree. Each continuing subparagraph has only the portion of the total electrical schematic applicable to the logic tree in this paragraph.

Each logic tree with its locator illustrations stand alone and are broken into smaller page size segments with single low arrows. A block "Go to paragraph" directs the continuation of the logic.

Verification of Symptom. When a particular symptom is found, reverify that the symptom is present before proceeding to the repair action procedure. This precludes unnecessary maintenance in the event an erroneous symptom occurs.

Each continuation of the logic tree has locator illustrations on the facing page identifying items on that portion of the logic tree. Each continuation has the same format as a regular logic tree except that the initial setup, tools, personnel and references are not repeated.

Verification of Repair. Under certain circumstances, a fault may be exhibited during the accomplishment of the Operational Check in one chapter and the troubleshooting and repair logic tree for that fault in another chapter. Also, some logic trees refer to another chapter or logic tree within another chapter for continuation of troubleshooting. After location and repair of the fault, rerun the operational check in which the fault appeared.
8-17. RETICLE IN TSU EYEPiece WILL NOT LIGHT (CONTINUED).

Turn off electrical power per paragraph 8-3.

Disconnect 20A1P03.

Connect multimeter between 20A1P03-E and airframe ground.

Turn on electrical power per paragraph 8-3.

NOTE: Verify TSU is operating in DAI mode.

On TCP (TOW control panel):

Rotate TSU RTCL control from OFF to BRT.

Does multimeter reading vary from 0 to 28 V dc as TSU RTCL control is rotated?

NO

Turn off electrical power per paragraph 8-3.

Check for continuity from 20A1P03-E to 20A4P02-J.

Is continuity present?

NO

Repair wire TG171A22 between 20A1P03-E and 20A4P02-J.

Connect 20A1P03.

Then go to paragraph 8-2.

YES

Turn off electrical power per paragraph 8-3.

Replace telescopic sight unit (TSU) per TM 9-1425-473-20, Chapter 2, Section V.

Then go to paragraph 8-2.

YES

Replace TOW control panel (TCP) per TM 9-1425-473-20, Chapter 2, Section V.

Connect 20A1P03.

Then go to paragraph 8-2.
INITIAL SETUP

Applicable Configuration
AH-1S

Tools/Test and Support

Equipment
Multimeter
Tool Set, A/C Armament
Repairman

Personnel Required
68J (2)

References
TM 9-1425-473-20
TM 9-1425-473-34
TM 55-1520-236-23

Access Panels
Middle Electronics (Tailboom) - Removed
Battery Compartment - Removed
Forward Belly Armament and Lighting - Removed

8-18. ONE OR MORE TSU BATTLEFLAGS DO NOT APPEAR WITH BIT SWITCH PRESSED.